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ABSTRACT 
In this study, the convergence of the solution of non-linear heat transfer equation 

with explicit and Crank-Nicolson’s methods have been studied. ( ) ( txcUtxU a
xxt ,, 1+= )
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INTRODUCTION 

 
For , the equation  0=a
 

( ) ( )txcUtxU a
xxt ,, 1+=         (1)                               

 
is linear parabolic equation and there is 
analytic solution [3].If  a , this equation 
is non-linear parabolic equation and there isn’t 
analytic solution [9,10,13]

0≠

 1. 
 As finding the non-linear equation’s 
solutions as analytic are not possible 
everytime, it is obtained approach solutions 
with numerical methods. But, in the solutions 
which are made by numerical methods, which 
is used should be convergence and stable so 
that the solution is meaningful [1]. 
 
 In the work, in the linear heat transfer 
equations the numerical solutions which is 
made by Explicit and Crank-Nicolson 
methods, it is shown that the solution is 
convergence, if 1−≥a , 

and ( ) a
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r . 
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THE LINEAR PARABOLIC EQUATIONS 
 

  
In heat transfer equation 
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for
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, if it is approached to 
( )
t

txU
∂

∂ ,
 with forward 

difference and if it is approached to  
( )

2

2 ,
x

txU
∂

∂
  with center difference, the 

equation (2) is written as follows     
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The equation (3) is explicit equation of 

the equation (2) [15]. Likewise, in the equation 

(2), if it is approached to 
( )
t

txU
∂

∂ ,
 with 

average of forward difference and if it is 

approached to 
( )

2

2 ,
x

txU
∂

∂
 with average of 

center difference, 
for

2,...,1,,,...,1, hkrandNjjktNiihx =====
, the equation (2) is written as follows 
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              ( )jijijijijiji rUUrrUrUUrrU ,1,,11,11,1,1 )22()22( +−++++− +−+=−++−         (4) 
 

This equation is Crank-Nicolson Equation of the equation (2) [1, 9, 15]. 
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If it is applied explicit formula to in the equation (1), it is obtained the non-linear explicit finite 
difference as follows 
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Let 

uUe −=                     (6) 
                                                 

Where is a finite difference convergence and U is the analytic solution of equation [5]. u
Hence, the equation (5) is expressed as follows, 
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for 11,1,,0 4321 <<−<< θθθθ , the equation(7) is written as follows, 
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In here,  If  .0≥U
                      jijj eMaxE ,=                                                      (9) 

 
and  
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The following inequality should be hold  

                                       (11)      
0])1(21[ , ≥+− a

jiUar
                  

So that all of terms of the equation (8) is equal or bigger than zero. Hence we have  
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On the other hand, in the equation 2hckr = , we have  because is step length of0>r h x ,  is 
step length of , is positive constant. Therefore, we have  
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The condition (13) is the convergence criteria of the explicit finite difference equation, for the 
equation (1).If   then  1−>a

                       a
jiUa ,)1(2

1
+

                       (14)    

                     
is positive . Hence if  then the inequality (13) is hold. On the other hand, the equation (8) is 
written as follows 
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For A  is constant and , if  0>A

                                           (16) AUUaUa a
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then, the equation (15) is written as follows 

                                              kMEE jj +≤+1                  (17)        
                       

 
[1,15].In here, for the  equation (17) we have  
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Because the inequality has zero error. U  is the analytic solution of , for , we 
have  

a
xxt UU += 1 0→M
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[10].So, for , the equation is convergence if  1−>a
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THE CONVERGENCE OF THE SOLUTION WITH CRANK-NICOLSON METHODS OF 
THE NON-LINEAR HEAT TRANSFER EQUATION 

 
If Crank-Nicolson Formula is applied to the equation (1), we have  
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This is non-linear Crank-Nicolson finite difference equation.By using (6), the equation (22) is 
written as follows  
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For 11,1,,,,0 654321 <<−<< θθθθθθ , the equation (23) is written as follows 
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In here,  From (9) and  .0≥U
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The following inequality is hold 
 

                                          01)1(2 , ≤−+
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So that all of terms of (24) is equal or bigger than zero.If  1−>a , then  
 
it is true. Therefore, if  
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The equation (1) is convergence for Crank-Nicolson finite difference methods. 
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